
Asynchronously Parallel Optimization Solver for
Finding Multiple Minima

Jeffrey Larson Stefan M. Wild

Argonne National Laboratory

August 10, 2016

Problem setup

Want to find distinct, high-quality minima for the problem

minimize
x∈Rn

f (x)

subject to: x ∈ D,

when D is compact, c concurrent evaluations of f are possible, and
relatively little is known about f a priori.

I Derivatives of f may or may not be available
I c is fairly small
I Evaluating f is expensive
I High-quality can be measured by more than the objective

2 of 19.

Problem setup

Want to find distinct, high-quality minima for the problem

minimize
x∈Rn

f (x)

subject to: x ∈ D,

when D is compact, c concurrent evaluations of f are possible, and
relatively little is known about f a priori.

I Derivatives of f may or may not be available
I c is fairly small
I Evaluating f is expensive
I High-quality can be measured by more than the objective

2 of 19.

Motivation

3 of 19.

Motivation

3 of 19.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

4 of 19.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

4 of 19.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)

I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

4 of 19.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

4 of 19.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

5 of 19.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

5 of 19.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

5 of 19.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

5 of 19.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D
I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

5 of 19.

Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

6 of 19.

Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

6 of 19.

Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

6 of 19.

Multistart Methods

An algorithm must trade-off between “refinement” and “exploration”.

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

6 of 19.

Where to start?
MLSL:

(S2)–(S4) APOSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

7 of 19.

Where to start?
MLSL: (S2)–(S4)

APOSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

7 of 19.

Where to start?
MLSL: (S2)–(S4) APOSMM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

7 of 19.

APOSMM

Iteration: 0; r_k: Inf

8 of 19.

APOSMM

Iteration: 1; r_k: 0.743

8 of 19.

APOSMM

Iteration: 2; r_k: 0.743

8 of 19.

APOSMM

Iteration: 3; r_k: 0.689

8 of 19.

APOSMM

Iteration: 4; r_k: 0.643

8 of 19.

APOSMM

Iteration: 5; r_k: 0.605

8 of 19.

APOSMM

Iteration: 6; r_k: 0.605

8 of 19.

APOSMM

Iteration: 7; r_k: 0.605

8 of 19.

APOSMM

Iteration: 8; r_k: 0.605

8 of 19.

APOSMM

Iteration: 9; r_k: 0.605

8 of 19.

APOSMM

Iteration: 10; r_k: 0.605

8 of 19.

APOSMM

Iteration: 35; r_k: 0.605

8 of 19.

APOSMM

Iteration: 36; r_k: 0.605

8 of 19.

APOSMM

Iteration: 37; r_k: 0.589

8 of 19.

APOSMM

Iteration: 38; r_k: 0.574

8 of 19.

APOSMM

Iteration: 39; r_k: 0.560

8 of 19.

APOSMM

Iteration: 40; r_k: 0.548

8 of 19.

APOSMM

Iteration: 41; r_k: 0.536

8 of 19.

APOSMM

Iteration: 42; r_k: 0.525

8 of 19.

APOSMM

Iteration: 43; r_k: 0.515

8 of 19.

APOSMM

Iteration: 44; r_k: 0.497

8 of 19.

APOSMM

Iteration: 45; r_k: 0.480

8 of 19.

APOSMM

Iteration: 80; r_k: 0.281

8 of 19.

APOSMM

Iteration: 81; r_k: 0.279

8 of 19.

APOSMM

Iteration: 82; r_k: 0.276

8 of 19.

APOSMM

Iteration: 83; r_k: 0.274

8 of 19.

APOSMM

Iteration: 84; r_k: 0.272

8 of 19.

APOSMM

Iteration: 85; r_k: 0.270

8 of 19.

APOSMM

Iteration: 86; r_k: 0.268

8 of 19.

APOSMM

Iteration: 87; r_k: 0.266

8 of 19.

APOSMM

Iteration: 88; r_k: 0.264

8 of 19.

APOSMM

Iteration: 89; r_k: 0.263

8 of 19.

APOSMM

Iteration: 90; r_k: 0.262

8 of 19.

APOSMM

Iteration: 91; r_k: 0.261

8 of 19.

APOSMM

Iteration: 92; r_k: 0.260

8 of 19.

APOSMM

Iteration: 93; r_k: 0.259

8 of 19.

APOSMM

Iteration: 94; r_k: 0.258

8 of 19.

APOSMM

Iteration: 95; r_k: 0.257

8 of 19.

APOSMM

Iteration: 96; r_k: 0.256

8 of 19.

APOSMM

Iteration: 97; r_k: 0.255

8 of 19.

APOSMM

Iteration: 98; r_k: 0.255

8 of 19.

APOSMM

Iteration: 99; r_k: 0.254

8 of 19.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

9 of 19.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

9 of 19.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

9 of 19.

Exploiting Structure

I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

I Least-squares minimization

minimize
x

f (x) =
∑

i

(Fi (x)− Ti)
2

10 of 19.

Theoretical results

I f ∈ C 2, with local minima in the interior of D, and the distance
between minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I Each run has points evaluated often enough

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

5 log |Sk |
|Sk |

Theorem
Each minima will almost surely be identified: either found in a finite
number of evaluations or have a single local optimization run converging
asymptotically to it.

11 of 19.

Theoretical results

I f ∈ C 2, with local minima in the interior of D, and the distance
between minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I Each run has points evaluated often enough

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

5 log |Sk |
|Sk |

Theorem
Each minima will almost surely be identified: either found in a finite
number of evaluations or have a single local optimization run converging
asymptotically to it.

11 of 19.

History

Check
history

Queue

Decide

Random
stream

MANAGERWORKERS CUSTODIANS

...

...

...

...

...

A

A

A

x ′

f (x̄)

x ′f (x̄)

x ′

f (x̄)

x ′

Measuring Performance

GLODS Global & local optimization using direct search [Custódio,

Madeira (JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy
code [Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell

(2009)], Initial sample size: 10n

13 of 19.

GKLS problems [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I Smooth augmentation of a convex quadratic; n = 2, . . . , 7
I 10 local minima in the unit cube with a unique global minimum
I 100 problems for each n; 5 replications; 2000(n + 1) evaluations

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 1

 2

 3

 4

 5
 6

 7
 8

 9

 10 −0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

14 of 19.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 after k evaluations
if an algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

15 of 19.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 after k
evaluations if:∣∣∣{x∗(1), . . . , x

∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ(n
2 +1)

πn/2 .

15 of 19.

Ability to Find Approximate Global Minimizer

(A)POSMM
I Makes rapid

progress to fG
I Outperforms other

algorithms (even
while demanding
14-fold
concurrency) 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

τ = 10−2

f (x)− fG ≤ (1− τ)
(
f (x0)− fG

)

16 of 19.

Ability to Find Approximate Global Minimizer

(A)POSMM
I Makes rapid

progress to fG
I Outperforms other

algorithms (even
while demanding
14-fold
concurrency) 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

τ = 10−5

f (x)− fG ≤ (1− τ)
(
f (x0)− fG

)

16 of 19.

Ability to Find j Best Minimizers

(A)POSMM
I Designed to find

more than just the
global minimizer

I Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−5, j = 2 minimizers

17 of 19.

Ability to Find j Best Minimizers

(A)POSMM
I Designed to find

more than just the
global minimizer

I Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−3, j = 7 minimizers

17 of 19.

Ability to Find j Best Minimizers

(A)POSMM
I Designed to find

more than just the
global minimizer

I Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−2, j = 3 minimizers

17 of 19.

Ability to Find j Best Minimizers

(A)POSMM
I Designed to find

more than just the
global minimizer

I Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−4, j = 3 minimizers

17 of 19.

(Tolerance, # Minimizers) Comparison With Random
Sampling

Area under data profile: POSMM (L), RS (R)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

0

0

τ

#
m
in
im

a

0

200

400

600

800

1000

1200

1400

1600

1800

0

0

0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

200

400

600

800

1000

1200

1400

1600

1800

18 of 19.

(Tolerance, # Minimizers) Comparison With Random
Sampling

Percent difference between POSMM and RS areas

0

0

0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

APOSMM has clear advantages as tolerances tighten

18 of 19.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Can write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework
I Best way to process the queue?

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov

jmlarson@anl.gov

19 of 19.

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov
jmlarson@anl.gov

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Can write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework
I Best way to process the queue?

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov

jmlarson@anl.gov

19 of 19.

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov
jmlarson@anl.gov

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Can write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework
I Best way to process the queue?

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov

jmlarson@anl.gov

19 of 19.

www.mcs.anl.gov/~jlarson/APOSMM
APOSMM@lists.mcs.anl.gov
jmlarson@anl.gov

